Gliver
์•Œ๊ณ ๋ฆฌ๋“ฌ
Gliver
ally.coding@gmail.com
์ „์ฒด ๋ฐฉ๋ฌธ์ž
์˜ค๋Š˜
์–ด์ œ
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (63)
    • โœ๏ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (43)
      • ํ•„๋…โญ (2)
      • ๊ธฐ๋ณธ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (7)
      • ํ•„์ˆ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (6)
      • ๊ทธ๋ž˜ํ”„ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (6)
      • PS ๊ธฐ๋ก (22)
    • ๐Ÿ“ Math (7)
      • Linear Algebra (7)
    • ๐Ÿ“ About .. (5)
      • About AI (0)
      • About CS (0)
      • About Develope (2)
      • ์•Œ์•„๋‘๋ฉด ์ข‹์€ ๋‚ด์šฉ๋“ค (3)
    • ๐Ÿ“œ ๊ธฐ๋ก (2)
      • ์ปด๊ณต ํ•™๋ถ€์ƒ 4๋…„ (2)

๋ธ”๋กœ๊ทธ ๋ฉ”๋‰ด

  • ํ™ˆ
  • ํƒœ๊ทธ
  • ๋ฐฉ๋ช…๋ก

๊ณต์ง€์‚ฌํ•ญ

์ธ๊ธฐ ๊ธ€

ํƒœ๊ทธ

  • python
  • ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐ•์˜

์ตœ๊ทผ ๋Œ“๊ธ€

์ตœ๊ทผ ๊ธ€

ํ‹ฐ์Šคํ† ๋ฆฌ

hELLO ยท Designed By ์ •์ƒ์šฐ.
Gliver

์•Œ๊ณ ๋ฆฌ๋“ฌ

๊ฐ•์˜ ๋Œ€ํ‘œ ์ด๋ฏธ์ง€
์ด ๊ธ€์˜ ์ €์ž๊ฐ€ ์ง์ ‘ ๊ฐ€๋ฅด์น˜๋Š” ๊ฐ•์˜๊ฐ€ ๋ณด๊ณ  ์‹ถ๋‹ค๋ฉด?
โญ๏ธ 24์‹œ๊ฐ„ ๋งŒ์— ์ฝ”๋”ฉํ…Œ์ŠคํŠธ ์ •๋ณตํ•˜๊ธฐ โญ๏ธ
๐Ÿ“ Math/Linear Algebra

์ฐจ์› ์ •๋ฆฌ(Dimension Theorem) ์ฆ๋ช…

2024. 10. 14. 19:06

์•ˆ๋…•ํ•˜์„ธ์š” Gliver ์ž…๋‹ˆ๋‹ค.

์ด๋ฒˆ ๊ธ€์—์„œ๋Š”, ์ฐจ์› ์ •๋ฆฌ(dimension theorem)๋ฅผ ์ฆ๋ช…ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

์ฐจ์› ์ •๋ฆฌ(Dimension Theorem)๋ž€?

์ฐจ์› ์ •๋ฆฌ์˜ ์ •์˜๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

 

์œ ํ•œ์ฐจ์› ๋ฒกํ„ฐ๊ณต๊ฐ„ $V$์™€ ์„ ํ˜•์‚ฌ์ƒ $L: V \rightarrow W$ ์— ๋Œ€ํ•˜์—ฌ ๋‹ค์Œ์ด ์„ฑ๋ฆฝํ•œ๋‹ค.
$\dim(V) = \dim(\mathrm{ker} L) + \dim( \mathrm{im}L)$
  • $\dim(V)$: ์ •์˜์—ญ $V$์˜ ์ฐจ์›์„ ์˜๋ฏธ
  • $\dim(\mathrm{ker} L)$: ํ•ต $\mathrm{ker} L$์˜ ์ฐจ์›์„ ์˜๋ฏธ
  • $\dim(\mathrm{im} L)$: ์ƒ $\mathrm{im} L$์˜ ์ฐจ์›์„ ์˜๋ฏธ

๊ฐ„๋‹จํ•˜๊ฒŒ, $\mathrm{ker} L$์€ 0๋ฒกํ„ฐ๊ฐ€ ๋‚˜์˜ค๊ฒŒ ํ•˜๋Š” ์ •์˜์—ญ ๊ณต๊ฐ„, $\mathrm{im} L$์€ ์น˜์—ญ ๊ณต๊ฐ„์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๋ฉด ๋œ๋‹ค.

 

์ฆ‰, ์ฐจ์› ์ •๋ฆฌ๊ฐ€ ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์€ ์ •์˜์—ญ์˜ ์ฐจ์›์€ ์น˜์—ญ์˜ ์ฐจ์›๊ณผ ํ•ต์˜ ์ฐจ์›์˜ ํ•ฉ๊ณผ ๊ฐ™๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

์ถœ์ฒ˜: ์œ„ํ‚ค๋ฐฑ๊ณผ

 

 

 

์ฐจ์› ์ •๋ฆฌ(Dimension Theorem) ์ฆ๋ช…

์ฐจ์› ์ •๋ฆฌ์˜ ์‹์„ ๋ฐ”๊ฟ”๋ณด๋ฉด, $\dim(V) - \dim(\mathrm{ker} L) = \dim(\mathrm{im} L)$ ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด๊ฒŒ ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์€ ์ •์˜์—ญ ์ฐจ์› $\dim(V)$์—์„œ 0๋ฒกํ„ฐ๋กœ ์‚ฌ์ƒ๋˜๋Š” ์ฐจ์› $\dim(\mathrm{ker} L)$์„ ๋นผ๋ฉด ์น˜์—ญ์˜ ์ฐจ์› $\dim(\mathrm{ker} L)$์ด ๋œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

๋”ฐ๋ผ์„œ, $V \setminus (\mathrm{ker} L)$์˜ ์ฐจ์›๊ณผ ์น˜์—ญ ๊ณต๊ฐ„์˜ ์ฐจ์›์ด ๊ฐ™๋‹ค๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•˜๋ฉด ๋œ๋‹ค. (์•„๋ž˜์˜ prop2์— ํ•ด๋‹นํ•˜๋Š” ๋‚ด์šฉ)

($V \setminus (\mathrm{ker} L)$์€ ์ •์˜์—ญ ๊ณต๊ฐ„ ์ค‘ ํ•ต $\mathrm{ker} L$์„ ์ œ์™ธํ•œ ๊ณต๊ฐ„์„ ์˜๋ฏธ)

์ •ํ™•ํ•˜๊ฒŒ๋Š”,  $V \setminus (\mathrm{ker} L)$ ์ด ์‚ฌ์ƒํ•˜๋Š” ๊ณต์—ญ ๊ณต๊ฐ„์ด ์น˜์—ญ ๊ณต๊ฐ„ $\mathrm{im} L$์ด๋ผ๋Š” ๊ฒƒ๋„ ์ฆ๋ช…ํ•ด์•ผ ํ•œ๋‹ค. (์•„๋ž˜์˜ prop1์— ํ•ด๋‹นํ•˜๋Š” ๋‚ด์šฉ)

 

 

$B_{V} = \{ v_1, v_2, \cdots, v_k, v_{k+1} \cdots, v_n \}$ ์ด๋ผ๊ณ  ํ•˜๋ฉด, $\mathrm{ker}L \subset V$ ์ด๋ฏ€๋กœ $B_{\mathrm{ker} L} = \{ v_1, v_2, \cdots, v_k \}$ ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด์ œ, ์šฐ๋ฆฌ๋Š” $B_{\mathrm{im}L} = \{L(v_{k+1}), L(v_{k+2}), \cdots, L(v_n) \}$ ์ž„์„ ์ฆ๋ช…ํ•˜๋ฉด ๋œ๋‹ค.

 

$B_{\mathrm{im}L} = \{L(v_{k+1}), L(v_{k+2}), \cdots, L(v_n) \}$ ์ž„์„ ์ฆ๋ช…ํ•˜๋ ค๋ฉด ์•„๋ž˜์™€ ๊ฐ™์€ 2๊ฐ€์ง€ ๋ช…์ œ๊ฐ€ ์ฐธ์ž„์„ ์ฆ๋ช…ํ•ด์•ผ ํ•œ๋‹ค.

  • prop1. $\{L(v_{k+1}), L(v_{k+2}), \cdots, L(v_n) \}$์ด $\mathrm{im}L$์„ ์ƒ์„ฑ(span)ํ•œ๋‹ค.
  • prop2. $L(v_{k+1}), L(v_{k+2}), \cdots, L(v_n)$์ด ์„œ๋กœ ์„ ํ˜•๋…๋ฆฝ์ด๋‹ค.

 

prop1. $\{L(v_{k+1}), L(v_{k+2}), \cdots, L(v_n) \}$์ด $\mathrm{im}L$์„ ์ƒ์„ฑ(span)ํ•œ๋‹ค.

$\forall L(v) \in \mathrm{im}L$ ์ด๋ฉฐ, $v = c_1v_1 + \cdots + c_kv_k + c_{k+1}v_{k+1} + \cdots + c_nv_n$ ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

๋”ฐ๋ผ์„œ, $L(v) = L(c_1v_1 + \cdots + c_kv_k + c_{k+1}v_{k+1} + \cdots + c_nv_n)$ ์ด๋‹ค.

 

์„ ํ˜•์‚ฌ์ƒ์˜ Additivity์— ์˜ํ•ด, $L(v) = L(c_1v_1 + \cdots + c_kv_k) + L(c_{k+1}v_{k+1} + \cdots + c_nv_n)$ ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค.

$L(c_1v_1 + \cdots + c_kv_k) = \vec{0}$ ์ด๋ฏ€๋กœ, $L(v) = L(c_{k+1}v_{k+1} + \cdots + c_nv_n)$ ์ด๋‹ค.

 

$L(c_1v_1 + \cdots + c_kv_k) = \vec{0}$ ์ธ ์ด์œ ๋Š” $B_{\mathrm{ker} L} = \{ v_1, v_2, \cdots, v_k \}$ ์ด๊ธฐ ๋•Œ๋ฌธ

 

 

์œ„์˜ ์‹์„ ์„ ํ˜•์‚ฌ์ƒ์˜ Additivity์™€ Homogeneity์— ์˜ํ•ด์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค.

 

$L(v) = c_{k+1}L(v_{k+1}) + \cdots + c_nL(v_n)$

 

์ด ์‹์ด ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์€ ์น˜์—ญ ๊ณต๊ฐ„์— ์†ํ•˜๋Š” ์ž„์˜์˜ ๋ฒกํ„ฐ $L(v)$๋ฅผ $L(v_{k+1}), L(v_{k+2}), \cdots, L(v_n)$ ์˜ ์„ ํ˜•๊ฒฐํ•ฉ์œผ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

๋”ฐ๋ผ์„œ, $\{L(v_{k+1}), L(v_{k+2}), \cdots, L(v_n) \}$์ด $\mathrm{im}L$ ์„ ์ƒ์„ฑ(span)ํ•œ๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

 

prop2. $L(v_{k+1}), L(v_{k+2}), \cdots, L(v_n)$์ด ์„œ๋กœ ์„ ํ˜•๋…๋ฆฝ์ด๋‹ค.

$L(v_{k+1}), L(v_{k+2}), \cdots, L(v_n)$ ์ด ์„œ๋กœ ์„ ํ˜•๋…๋ฆฝ์ด๋ผ๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•˜๋Š” ๊ฒƒ์€

$c_{k+1}L(v_{k+1}) + \cdots + c_nL(v_n) = \vec{0}$ ์˜ ์œ ์ผํ•œ ํ•ด๊ฐ€  $c_{k+1} = c_{k+2} = \cdots = c_n = 0$ ์ž„์„ ๋ณด์ด๋ฉด ๋œ๋‹ค.

 

$c_{k+1}L(v_{k+1}) + \cdots + c_nL(v_n) = \vec{0}$ ์‹์€ ์•„๋ž˜์™€ ๊ฐ™์€ ๊ณผ์ •์„ ๊ฑฐ์น  ์ˆ˜ ์žˆ๋‹ค.

  • $c_{k+1}L(v_{k+1}) + \cdots + c_nL(v_n) = \vec{0}$
  • $L(c_{k+1}v_{k+1} + \cdots c_nv_n) = \vec{0}$

$L(c_{k+1}v_{k+1} + \cdots c_nv_n) = \vec{0}$ ์ด๋ฏ€๋กœ, $c_{k+1}v_{k+1} + \cdots c_nv_n \in \mathrm{ker}L$ ์ด๋‹ค.

๋”ฐ๋ผ์„œ ์ปค๋„์˜ ์›์†Œ์ธ $c_{k+1}v_{k+1} + \cdots c_nv_n$ ์€ $B_{\mathrm{ker}L}$ ์˜ ์„ ํ˜•๊ฒฐํ•ฉ์œผ๋กœ ํ‘œํ˜„ ๊ฐ€๋Šฅํ•˜๋‹ค.

  • $c_{k+1}v_{k+1} + \cdots c_nv_n = c_1v_1 + \cdots + c_kv_k$
  • $c_1v_1 + \cdots +c_kv_k - c_{k+1}v_{k+1} - \cdots - c_nv_n = \vec{0}$

$B_V = \{v_1, \cdots, v_n\}$ ์ด๋‹ค

๋”ฐ๋ผ์„œ, ์œ„ ์‹์„ ๋งŒ์กฑํ•˜๋Š” $c_1, \cdots, c_k, -c_{k+1}, \cdots, -c_n$ ์€ $c_1 = \cdots = c_k = -c_{k+1} = \cdots = -c_n = 0$ ์ด ์œ ์ผํ•˜๋‹ค.

์ฆ‰, $c_{k+1}L(v_{k+1}) + \cdots + c_nL(v_n) = \vec{0}$ ์ด๊ธฐ ์œ„ํ•œ ์œ ์ผํ•œ ํ•ด๊ฐ€ $c_{k+1} = c_{k+2} = \cdots = c_n = 0$ ์ž„์ด ์œ ์ผํ•œ ๊ฒƒ์ด๋‹ค.

 

๊ทธ๋Ÿฌ๋ฏ€๋กœ, $L(v_{k+1}), L(v_{k+2}), \cdots, L(v_n)$์€ ์„œ๋กœ ์„ ํ˜•๋…๋ฆฝ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

 

prop1, prop2๊ฐ€ ์ฐธ์ด๋ฏ€๋กœ,,

prop1, prop2 ๊ฐ€ ์ฐธ์ด๋ฏ€๋กœ, $B_{\mathrm{im}L} = \{L(v_{k+1}), L(v_{k+2}), \cdots, L(v_n) \}$ ์ด ์ฐธ์ด๋‹ค.

๋”ฐ๋ผ์„œ, $\dim(V) - \dim(\mathrm{ker} L) = \dim(\mathrm{im} L)$์ด ์ฐธ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฆ๋ช… ๋.

 

 

 

'๐Ÿ“ Math > Linear Algebra' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

๊ณ„์ˆ˜-ํ‡ดํ™”์ฐจ์ˆ˜ ์ •๋ฆฌ(Rank-Nullity Theorem) ์ฆ๋ช…  (0) 2024.10.19
์Šค์นผ๋ผ ๊ณฑ(๋‚ด์ ) ๊ณต์‹ ์ฆ๋ช…  (0) 2024.10.13
ํฌ๋ž˜๋จธ ๊ณต์‹(Cramer's Rule) ์ฆ๋ช…  (0) 2024.10.13
์—ญํ–‰๋ ฌ ๊ณฑ์…ˆ ๊ตํ™˜ ๋ฒ•์น™ ์ฆ๋ช…  (0) 2024.09.29
๋ฌผ๋ฆฌ์—์„œ์˜ ๋ฒกํ„ฐ vs ์ˆ˜ํ•™์—์„œ์˜ ๋ฒกํ„ฐ  (2) 2024.09.29
    '๐Ÿ“ Math/Linear Algebra' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
    • ๊ณ„์ˆ˜-ํ‡ดํ™”์ฐจ์ˆ˜ ์ •๋ฆฌ(Rank-Nullity Theorem) ์ฆ๋ช…
    • ์Šค์นผ๋ผ ๊ณฑ(๋‚ด์ ) ๊ณต์‹ ์ฆ๋ช…
    • ํฌ๋ž˜๋จธ ๊ณต์‹(Cramer's Rule) ์ฆ๋ช…
    • ์—ญํ–‰๋ ฌ ๊ณฑ์…ˆ ๊ตํ™˜ ๋ฒ•์น™ ์ฆ๋ช…
    Gliver
    Gliver

    ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”